Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy

Neurotox Res. 2024 Jun 10;42(3):29. doi: 10.1007/s12640-024-00707-1.

Abstract

Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.

Keywords: Behavior; Enriched environment; Ethanol; Noise; Oxidative stress.

MeSH terms

  • Alcohol Drinking
  • Animals
  • Ethanol* / administration & dosage
  • Ethanol* / toxicity
  • Female
  • Hippocampus* / drug effects
  • Male
  • Noise* / adverse effects
  • Oxidative Stress / drug effects
  • Oxidative Stress / physiology
  • Rats
  • Rats, Wistar*
  • Sex Characteristics

Substances

  • Ethanol