The electronic configuration of transition metal centers and their ligands is crucial for redox reactions in metal catalysis and electrochemistry. We characterize the electronic structure of gas-phase nickel monohalide cations via nickel L2,3-edge X-ray absorption spectroscopy. Comparison with multiplet charge-transfer simulations and experimental spectra of selectively prepared nickel monocations in both ground- and excited-state configurations are used to facilitate our analysis. Only for [NiF]+ with an assigned ground state of 3Π can the bonding be described as predominantly ionic, while the heavier halides with assigned ground states of 3Π or 3Δ exhibit a predominantly covalent contribution. The increase in covalency is accompanied by a transition from a classical ligand field for [NiF]+ to an inverted ligand field for [NiCl]+, [NiBr]+, and [NiI]+, resulting in a leading 3d9 L̲ configuration with a ligand hole (L̲) and a 3d occupation indicative of nickel(I) compounds. Hence, the absence of a ligand hole in [NiF]+ precludes any ligand-based redox reactions. Additionally, we demonstrate that the shift in energy of the L3 resonance is reduced compared to that of isolated atoms upon the formation of covalent compounds.