Background: Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood.
Objectives: To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo.
Methods: Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization.
Results: The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, β2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-β1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs.
Conclusions: The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
About 75–90% of people with cancer who are treated with drugs called EGFR inhibitors (EGFRi) and MEK inhibitors (MEKi) will get a skin condition called folliculitis. This is where the hair follicles become inflamed. Despite this, the reasons why some patients develop this are not well understood. In this study, we had three goals. We wanted to understand how these medications alter the skin’s immune response and genetic processes. We also wished to determine the impact of the medications on the immune protection of hair follicles. Finally, we wanted to find early signs of inflammation in hair follicles caused by the medications. We studied scalp samples from people who got folliculitis after long-term EGFRi treatment and compared them to samples of healthy scalp skin. We also examined patients before and after they began EGFRi treatment. In the lab, we exposed healthy hair follicles to an EGFRi called ‘erlotinib’ or a MEKi called ‘cobimetinib’. We then carried out detailed imaging and genetic analyses. We found that long-term treatment with EGFRi increased certain immune cells (called CD8+ T cells) in the hair follicle area. This led to a breakdown in the immune protection around hair follicles. A similar breakdown was found in lab-treated healthy follicles. Genetic changes linked to inflammation were also found. Our findings suggest that EGFRi and MEKi treatments could affect the natural immune defence of hair follicles in the scalp and cause folliculitis. Protecting the immune system and controlling inflammation might be the key to treating people with these drug-related skin conditions.
© The Author(s) 2024. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].