Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury

Basic Res Cardiol. 2024 Aug;119(4):691-697. doi: 10.1007/s00395-024-01063-z. Epub 2024 Jun 12.

Abstract

The mitochondrial metabolite succinate is a key driver of ischemia/reperfusion injury (IRI). Targeting succinate metabolism by inhibiting succinate dehydrogenase (SDH) upon reperfusion using malonate is an effective therapeutic strategy to achieve cardioprotection in the short term (< 24 h reperfusion) in mouse and pig in vivo myocardial infarction (MI) models. We aimed to assess whether inhibiting IRI with malonate given upon reperfusion could prevent post-MI heart failure (HF) assessed after 28 days. Male C57BL/6 J mice were subjected to 30 min left anterior coronary artery (LAD) occlusion, before reperfusion for 28 days. Malonate or without-malonate control was infused as a single dose upon reperfusion. Cardiac function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Reperfusion without malonate significantly reduced ejection fraction (~ 47%), fractional shortening (~ 23%) and elevated collagen deposition 28 days post-MI. Malonate, administered as a single infusion (16 mg/kg/min for 10 min) upon reperfusion, gave a significant cardioprotective effect, with ejection fraction (~ 60%) and fractional shortening (~ 30%) preserved and less collagen deposition. Using an acidified malonate formulation, to enhance its uptake into cardiomyocytes via the monocarboxylate transporter 1, both 1.6 and 16 mg/kg/min 10 min infusion led to robust long-term cardioprotection with preserved ejection fraction (> 60%) and fractional shortening (~ 30%), as well as significantly less collagen deposition than control hearts. Malonate administration upon reperfusion prevents post-MI HF. Acidification of malonate enables lower doses of malonate to also achieve long-term cardioprotection post-MI. Therefore, the administration of acidified malonate upon reperfusion is a promising therapeutic strategy to prevent IRI and post-MI HF.

Keywords: Heart failure with reduced ejection fraction; Ischemia/reperfusion injury; Malonate; Mitochondria; Reactive oxygen species; Succinate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal*
  • Fibrosis
  • Heart Failure* / drug therapy
  • Heart Failure* / etiology
  • Heart Failure* / metabolism
  • Heart Failure* / physiopathology
  • Heart Failure* / prevention & control
  • Male
  • Malonates* / pharmacology
  • Mice
  • Mice, Inbred C57BL*
  • Myocardial Infarction* / metabolism
  • Myocardial Infarction* / pathology
  • Myocardial Infarction* / physiopathology
  • Myocardial Infarction* / prevention & control
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / pathology
  • Myocardial Reperfusion Injury* / physiopathology
  • Myocardial Reperfusion Injury* / prevention & control
  • Myocardium / metabolism
  • Myocardium / pathology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Time Factors
  • Ventricular Function, Left / drug effects

Substances

  • Malonates
  • malonic acid