Background and aim: Randomised trials show improved polyp detection with computer-aided detection (CADe), mostly of small lesions. However, operator and selection bias may affect CADe's true benefit. Clinical outcomes of increased detection have not yet been fully elucidated.
Methods: In this multicentre trial, CADe combining convolutional and recurrent neural networks was used for polyp detection. Blinded endoscopists were monitored in real time by a second observer with CADe access. CADe detections prompted reinspection. Adenoma detection rates (ADR) and polyp detection rates were measured prestudy and poststudy. Histological assessments were done by independent histopathologists. The primary outcome compared polyp detection between endoscopists and CADe.
Results: In 946 patients (51.9% male, mean age 64), a total of 2141 polyps were identified, including 989 adenomas. CADe was not superior to human polyp detection (sensitivity 94.6% vs 96.0%) but outperformed them when restricted to adenomas. Unblinding led to an additional yield of 86 true positive polyp detections (1.1% ADR increase per patient; 73.8% were <5 mm). CADe also increased non-neoplastic polyp detection by an absolute value of 4.9% of the cases (1.8% increase of entire polyp load). Procedure time increased with 6.6±6.5 min (+42.6%). In 22/946 patients, the additional detection of adenomas changed surveillance intervals (2.3%), mostly by increasing the number of small adenomas beyond the cut-off.
Conclusion: Even if CADe appears to be slightly more sensitive than human endoscopists, the additional gain in ADR was minimal and follow-up intervals rarely changed. Additional inspection of non-neoplastic lesions was increased, adding to the inspection and/or polypectomy workload.
Keywords: COLORECTAL CANCER SCREENING; COLORECTAL NEOPLASIA; COMPUTERISED IMAGE ANALYSIS; ENDOSCOPY.
© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.