A crucial physiological indicator known as water use efficiency (WUE) (Foley et al.) assesses the trade-off between water loss and carbon uptake. The carbon and water coupling mechanisms, energy balance, and hydrological cycle processes in the ecosystem are impacted by climate change, vegetation dynamics, and land use change. In this study, we employed Sen trend analysis, the Mann-Kendall test, the land-use transfer matrix, and multiple linear regression analysis to investigate the regional and temporal dynamics of WUE and its reaction to climate change and land-use transfer changes in China. According to the findings, the annual average WUE in China was 0.998 gC/mm·m2 from 2000 to 2017. Of the nine major river basins, the Continental Basin had the lowest WUE (0.529 gC/mm·m2), and the Southwest River Basin had the highest WUE (0.691 gC/mm·m2), while the Pearl River Basin and the Southeast River Basin had the highest WUEs (1.184 gC/mm·m2). The Haihe River Basin and the Yellow River Basin were the key regions with elevated WUE. Forest had the greatest WUE (1.134 gC/mm·m2; out of the nine major river basins), followed by shrub (1.109 gC/mm·m2). Vegetation dynamics changes had a higher impact on WUE than climate change and land use changes, when the contributions of climate change, vegetation dynamics changes, and land use changes to WUE were separated. The largest climatic factor influencing variations in WUE was VPD (28.04% ± 3.98%), whereas among the vegetation dynamics factors, NDVI (33.75% ± 6.90%) and LAI (22.21% ± 2.11%) contributed the most. The transition from high to low vegetation cover led to a relative decrease in WUE, and vice versa, according to data on land use change in China from 2000 to 2017. Land use change made a positive impact to WUE change. The findings of this study may be helpful in China for choosing a suitable regional plant cover and managing local water resources sustainably.
Keywords: Climate; Land use; Net primary productivity; Vegetation dynamics; Water use efficiency.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.