In general, vibrational physics has been well described by quantum perturbation theory to provide footprint characteristics for common crystals. However, despite weak phonon anharmonicity, the recently discovered cubic crystals have shown anomalous vibrational dynamics with elusive fundamental origin. Here, we developed a non-perturbative ab initio approach, in together with spectroscopy and high-pressure experiments, to successfully determine the exact dynamic evolutions of the vibrational physics for the first time. We found that the local fluctuation and coupling isotopes significantly dictate the vibrational spectra, through the Brillouin zone folding that has been previously ignored in literature. By decomposing vibrational spectra into individual isotope eigenvectors, we observed both positive and negative contributions to Raman intensity from constitutional atoms (10B, 11B, 75As or 31P). Importantly, our non-perturbative theory predicts that a novel vibrational resonance appears at high hydrostatic pressure due to broken translational symmetry, which was indeed verified by experimental measurement under a pressure up to 31.5 GPa. Our study develops fundamental understandings for the anomalous lattice physics under the failure of quantum perturbation theory and provides a new approach in exploring novel transport phenomena for materials of extreme properties.