Background: Gait impairment is an early marker of Parkinson's disease (PD) and is frequently monitored to evaluate disease progression. Wearable sensors are increasingly being used to quantify gait in the real-world setting among people with PD (pwPD). Particularly, embedding wearables on devices or clothing that are worn daily may represent a useful strategy to improve compliance and regular monitoring of gait.
Research question: The current investigation examined the validity of innovative smart glasses to measure gait among pwPD.
Methods: Participants wore the smart glasses and 6 APDM gait sensors simultaneously, while performing two walking tasks: the 3-meters Timed Up and Go test (TUG) and the 7-meters Stand and Walk (SAW) test. The following spatiotemporal gait parameters were calculated from the data collected using the two different devices: step time, step length, swing percentage, TUG duration, turn duration, and turn velocity.
Results: A total of 31 pwPD (mean age=68.6±8.5 years; 35.48 % female(N=11), mean Unified Parkinson's Disease Rating Scale (UPDRS) total score=32.1±14.7) participated in the study. Smart glasses achieved high validity in measuring step time (ICC=0.92, p=0.01) and TUG duration (ICC=0.96, p=0.03) compared to APDM sensors. On the other hand, the smart glasses did not achieve adequate validity when measuring step length, swing percentage, turn duration or turn velocity.
Significance: The current study suggests that smart glasses has the potential to measure TUG and step time in individuals living with PD. However, further research is needed to improve algorithms for sensors worn on the head.
Keywords: Clinic activities; Gait; Gait disorders; Parkinson’s disease; Validity; Wearable sensors.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.