Novel NLRP3 inhibitor INF195: Low doses provide effective protection against myocardial ischemia/reperfusion injury

Vascul Pharmacol. 2024 Sep:156:107397. doi: 10.1016/j.vph.2024.107397. Epub 2024 Jun 17.

Abstract

Background: Several factors contribute to ischemia/reperfusion injury (IRI), including activation of the NLRP3 inflammasome and its byproducts, such as interleukin-1β (IL-1β) and caspase-1. However, NLRP3 may paradoxically exhibit cardioprotective properties. This study aimed to assess the protective effects of the novel NLRP3 inhibitor, INF195, both in vitro and ex vivo.

Methods: To investigate the relationship between NLRP3 and myocardial IRI, we synthetized a series of novel NLRP3 inhibitors, and investigated their putative binding mode via docking studies. Through in vitro studies we identified INF195 as optimal for NLRP3 inhibition. We measured infarct-size in isolated mouse hearts subjected to 30-min global ischemia/one-hour reperfusion in the presence of three different doses of INF195 (5, 10, or 20-μM). We analyzed caspase-1 and IL-1β concentration in cardiac tissue homogenates by ELISA. Statistical significance was determined using one-way ANOVA followed by Tukey's test.

Results and conclusion: INF195 reduces NLRP3-induced pyroptosis in human macrophages. Heart pre-treatment with 5 and 10-μM INF195 significantly reduces both infarct size and IL-1β levels. Data suggest that intracardiac NLRP3 activation contributes to IRI and that low doses of INF195 exert cardioprotective effects by reducing infarct size. However, at 20-μM, INF195 efficacy declines, leading to a lack of cardioprotection. Research is required to determine if high doses of INF195 have off-target effects or dual roles, potentially eliminating both harmful and cardioprotective functions of NLRP3. Our findings highlight the potential of a new chemical scaffold, amenable to further optimization, to provide NLRP3 inhibition and cardioprotection in the ischemia/reperfusion setting.

Keywords: Cardioprotection; Interleukin-1β; NLRP3 inflammasome.

MeSH terms

  • Animals
  • Caspase 1* / metabolism
  • Disease Models, Animal*
  • Dose-Response Relationship, Drug*
  • Humans
  • Inflammasomes* / antagonists & inhibitors
  • Inflammasomes* / drug effects
  • Inflammasomes* / metabolism
  • Interleukin-1beta* / metabolism
  • Isolated Heart Preparation
  • Male
  • Mice
  • Mice, Inbred C57BL*
  • Molecular Docking Simulation
  • Myocardial Infarction* / metabolism
  • Myocardial Infarction* / pathology
  • Myocardial Infarction* / prevention & control
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / pathology
  • Myocardial Reperfusion Injury* / prevention & control
  • Myocardium / metabolism
  • Myocardium / pathology
  • NLR Family, Pyrin Domain-Containing 3 Protein* / antagonists & inhibitors
  • NLR Family, Pyrin Domain-Containing 3 Protein* / metabolism
  • Signal Transduction / drug effects

Substances

  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Caspase 1
  • Nlrp3 protein, mouse
  • Interleukin-1beta
  • Inflammasomes
  • Casp1 protein, mouse
  • IL1B protein, mouse
  • NLRP3 protein, human