Xi'an is the political, economic, and cultural center of northwest China with a developed industry. Air pollution incidents have brought great challenges to the high-quality development of the social economy. It is vital to study air pollution characteristics and clarify their impact on human health. In this study, we first analyzed the spatiotemporal variations in air pollutants in the study region from 2015 to 2021. Then, the air quality index (AQI), aggregate air quality index (AAQI), and health risk-based air quality index (HAQI) were used to assess health risks. Based on these, the AirQ2.2.3 model was used to quantify health effects. The results showed that the major pollutants were PM10, PM2.5, and O3. The main pollution characteristics of the study area were terrain characteristics and the mixed pollution of anthropogenic emissions. Compared to that of AQI, AAQI and HAQI showed better classification performance for pollution levels. HAQI revealed that approximately 80 % of the population was exposed to unhealthy air throughout the year in the study region. People were most exposed to unhealthy air in winter, followed by autumn and spring, and the least in summer. The AirQ2.2.3 model quantified the total mortality proportions attributable to PM2.5, PM10, SO2, CO, NO2, and O3, which were 0.99 %, 2.04 %, 0.41 %, 1.72 %, 8.76 %, and 3.67 %, respectively. The attributable proportion of mortality of the respiratory system and cardiovascular diseases was consistent with the change rule of total mortality.
Keywords: air quality; atmospheric pollutant; excess risk; human health; spatiotemporal change.