Unlocking High Capacity and Reversible Alkaline Iron Redox Using Silicate-Sodium Hydroxide Hybrid Electrolytes

ChemSusChem. 2024 Oct 7;17(19):e202400050. doi: 10.1002/cssc.202400050. Epub 2024 Aug 9.

Abstract

Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4 on discharging and parasitic H2 on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4 conversions. Electrochemical experiments, operando X-ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate-induced strengthening of hydrogen-bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de-sorption on iron surfaces. This new silicate-assisted redox chemistry mitigates H2 and Fe3O4 formation, improving storage capacity (199 mAh g-1 in half-cells) and coulombic efficiency (94 % after 400 full-cell cycles), paving a path to realizing green battery systems built from earth-abundant materials.

Keywords: alkaline iron batteries; electrolyte additives; molecular dynamics modeling; operando x-ray diffraction; silicates.