Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl : OA in molar ratios 1 : 1 and 2 : 1 and ChCl : EG 1 : 2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl : OA : EG-tDES with 13% added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 1 μM-200 μM, with detection limits of 0.37 μM and 0.49 μM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.
Keywords: 5-aminosalicylic acid and acetaminophen; binary and ternary deep eutectic solvents; electropolymerization; methylene green; multiwalled carbon nanotubes.
© 2024 Wiley-VCH GmbH.