The purpose of this study was to determine the most effective method for bonding composite resin to artificially aged amalgam. A spherical amalgam alloy was triturated and condensed by hand into cylindrical plastic molds (6 mm in diameter and 4 mm in height) to create 90 specimens, which were then aged for 2 weeks in closed plastic containers at 23°C. The amalgam surfaces underwent 1 of 3 surface treatments (n = 30 per treatment): (1) air particle abrasion (APA) with 50-μm aluminum oxide particles applied with a force of 45 psi from a 10-mm distance, followed by rinsing with deionized water for 60 seconds; (2) APA following the same protocol with subsequent application of a metal primer (Alloy Primer); or (3) coating with 30-μm silica (CoJet) at a force of 45 psi from a 10-mm distance until the surface turned black. Specimens were then treated with 1 of 3 adhesives (n = 10 per adhesive per surface treatment): (1) 2-step total-etch adhesive (OptiBond Solo Plus), (2) 1-step self-etching adhesive (Scotchbond Universal), or (3) dual-cured resin cement (Panavia F 2.0). Each adhesive was applied to the treated amalgam surfaces following its manufacturer's instructions. The specimens were placed in a bonding clamp, and nanocomposite resin columns, 2.38 mm in diameter and 2.00 mm in height, were photocured (40 seconds, 500 mW/cm2) against the treated amalgam surfaces. The specimens were stored for 24 hours in 37°C deionized water and underwent shear bond strength testing at a crosshead speed of 0.5 mm/min. Data were analyzed using 2-way analysis of variance and post hoc analysis with the Tukey test at 95% confidence. The mean (SD) shear bond strength values ranged from 12.3 (1.2) MPa for aluminum oxide-treated surfaces bonded with OptiBond Solo Plus to 25.9 (4.6) MPa for silicoated surfaces bonded with Panavia F 2.0. All bonding agents produced the highest shear bond strength when the amalgam surface was silicoated. These results indicate that composite can be effectively bonded to amalgam via silicoating.
Keywords: amalgam; bond strengths; composite resins; repair; silicoating.