Background: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal.
Objective: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS.
Methods: We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions.
Results: Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP.
Conclusion: Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.
Keywords: Deep brain stimulation; Local field potential; Parkinson's disease; Phase-targeted auditory stimulation; Slow-wave sleep; Subthalamic nucleus.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.