Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines. Out of five events, only three could produce seeds upon selfing. The progenies showed poor seed set and segregation distortion, and we were unable to recover homozygous knockdown lines. The knockdown lines showed a decrease in accumulation of AcCENH3 transcript and protein in leaf tissue. The decrease in protein content in transgenic plants was correlated with poor seed set. When the heterozygous knockdown lines were crossed with wild-type plants, progenies showed HI by genome elimination of the parental chromosomes from AcCENH3 knockdown lines. The HI efficiency observed was between 0 and 4.63% in the three events, and it was the highest (4.63%) when E1 line was crossed with wildtype. Given the importance of doubled haploids in breeding programmes, the findings from our study are poised to significantly impact onion breeding.
Keywords: Centromere specific histone3; Genome elimination; Segregation distortion and haploid induction.
© 2024. The Author(s).