The emergence of drug-resistant Mycobacterium tuberculosis strains is a threat to global health necessitating the discovery of novel chemotherapeutic agents. Natural products drug discovery, which previously led to the discovery of rifamycins, is a valuable approach in this endeavor. Against this backdrop, we set out to investigate the in vitro antimycobacterial properties of medicinal plants from Ghana and South Africa, evaluating 36 extracts and their 252 corresponding solid phase extraction (SPE) generated fractions primarily against the non-pathogenic Mycobacterium smegmatis and Mycobacterium aurum species. The most potent fraction was further evaluated in vitro against infectious M. tuberculosis strain. Crinum asiaticum (bulb) (Amaryllidaceae) emerged as the most potent plant species with specific fractions showing exceptional, near equipotent activity against the non-pathogenic Mycobacterium species (0.39 µg/ml ≤ MIC ≤ 25 µg/ml) with one fraction being moderately active (MIC = 32.6 µg/ml) against M. tuberculosis. Metabolomic analysis led to the identification of eight compounds predicted to be active against M. smegmatis and M. aurum. In conclusion, from our comprehensive study, we generated data which provided an insight into the antimycobacterial properties of Ghanaian and South African plants. Future work will be focused on the isolation and evaluation of the compounds predicted to be active.
Keywords: Mycobacterium tuberculosis; Antimicrobial drug resistance; Metabolomics; Natural products; Plants; Tuberculosis.
© 2024. The Author(s).