The Detection of Vaccine Virus and Protection of a Modified Live, Intranasal, Trivalent Vaccine in Neonatal, Colostrum-Fed Calves with an Experimental Bovine Respiratory Syncytial Virus Challenge

Pathogens. 2024 Jun 19;13(6):517. doi: 10.3390/pathogens13060517.

Abstract

The efficacy of an intranasal (IN) bovine respiratory syncytial virus (BRSV) vaccine administered in the presence of passive immunity was assessed. Pooled colostrum was administered by intubation to 50 beef-dairy crossbred calves the day they were born. The calves were transported to a research facility and were blocked by age and sex, and randomly assigned into two groups: sham-vaccinated intranasally with a placebo (sterile water) or vaccinated with a trivalent (BRSV, bovine herpesvirus 1 and bovine parainfluenza 3) modified live viral (MLV) vaccine. The calves were 9 ± 2 days old when vaccinated (day 0). The calves were challenged by aerosolized BRSV on days 80 and 81 as a respiratory challenge. The study was terminated on day 88. Lung lesion scores (LLS) were significantly lower for calves vaccinated with trivalent MLV vaccine than those for calves that were sham-vaccinated. Serum neutralization (SN) antibody against BRSV in calves vaccinated with the trivalent MLV vaccine demonstrated an anamnestic response on day 88. After challenge, the calves sham-vaccinated with the placebo lost weight, while those vaccinated with the trivalent MLV vaccine gained weight. In this study, colostrum-derived antibodies did not interfere with the immune response or protection provided by one dose of the trivalent MLV vaccine.

Keywords: bovine herpesvirus; bovine respiratory syncytial virus; intranasal trivalent vaccine; maternal antibody; neonatal calves; pulmonary lesions; serum neutralization antibodies; vaccine virus detection; virulent challenge.