Antibodies that can selectively remove rogue proteins in the brain are an obvious choice to treat neurodegenerative disorders (NDs), but after decades of efforts, only two antibodies to treat Alzheimer's disease are approved, dozens are in the testing phase, and one was withdrawn, and the other halted, likely due to efficacy issues. However, these outcomes should have been evident since these antibodies cannot enter the brain sufficiently due to the blood-brain barrier (BBB) protectant. However, all products can be rejuvenated by binding them with transferrin, preferably as smaller fragments. This model can be tested quickly and at a low cost and should be applied to bapineuzumab, solanezumab, crenezumab, gantenerumab, aducanumab, lecanemab, donanemab, cinpanemab, and gantenerumab, and their fragments. This paper demonstrates that conjugating with transferrin does not alter the binding to brain proteins such as amyloid-β (Aβ) and α-synuclein. We also present a selection of conjugate designs that will allow cleavage upon entering the brain to prevent their exocytosis while keeping the fragments connected to enable optimal binding to proteins. The identified products can be readily tested and returned to patients with the lowest regulatory cost and delays. These engineered antibodies can be manufactured by recombinant engineering, preferably by mRNA technology, as a more affordable solution to meet the dire need to treat neurodegenerative disorders effectively.
Keywords: Alzheimer’s disease; Fab fragments; amyloid-β; minibodies; nanobodies; neurodegenerative disorders; transcytosis; transferrin; α-synuclein.