Effect of Air Classification and Enzymatic and Microbial Bioprocessing on Defatted Durum Wheat Germ: Characterization and Use as Bread Ingredient

Foods. 2024 Jun 20;13(12):1953. doi: 10.3390/foods13121953.

Abstract

Its high dietary fiber and protein contents and nutritional quality make defatted wheat germ (DWG) a valuable cereal by-product, yet its negative impact on food structure limits its use as a food ingredient. In this research, DWG underwent air classification, which identified two fractions with high fiber (HF) and low fiber/high protein (LF) contents, and a bioprocessing protocol, involving treatment with xylanase and fermentation with selected lactic acid bacterial strains. The degree of proteolysis was evaluated through electrophoretic and chromatographic techniques, revealing differences among fractions and bioprocessing options. Fermentation led to a significant increase in free amino acids (up to 6 g/kg), further enhanced by the combination with xylanase. When HF was used as an ingredient in bread making, the fiber content of the resulting bread exceeded 3.6 g/100 g, thus reaching the threshold required to make a "source of fiber" claim according to Regulation EC No.1924/2006. Meanwhile, all breads could be labeled a "source of protein" since up to 13% of the energy was provided by proteins. Overall, bioprocessed ingredients lowered the glycemic index (84 vs. 89) and increased protein digestibility (80 vs. 63%) compared to control breads. Technological and sensory analysis showed that the enzymatic treatment combined with fermentation also conferred a darker and more pleasant color to the bread crust, as well as better crumb porosity and elasticity.

Keywords: bread volume; defatted durum wheat germ; glycemic index; lactic acid bacteria; xylanase.