Despite the high prevalence of developmental dyslexia in the U.S. population, research remains limited and possibly biased due to the overrepresentation of males in most dyslexic samples. Studying biological sex differences in the context of developmental dyslexia can help provide a more complete understanding of the neurological markers that underly this disorder. The current study aimed to explore sex differences in white matter diffusivity in typical and dyslexic samples in third and fourth graders. Participants were asked to complete behavioral/cognitive assessments at baseline followed by MRI scanning and diffusion-weighted imaging sequences. A series of ANOVAs were conducted for comparing group membership (developmental dyslexia or typically developing), gender status (F/M), and white matter diffusivity in the tracts of interest. The Results indicated significant differences in fractional anisotropy in the left hemisphere components of the inferior and superior (parietal and temporal) longitudinal fasciculi. While males with dyslexia had lower fractional anisotropy in these tracts compared to control males, no such differences were found in females. The results of the current study may suggest that females may use a more bilateral/alternative reading network.
Keywords: DTI; developmental dyslexia; learning disability; neurobiology; pediatrics; reading; reading disability; reading network; sex differences; white matter.