DEK219 and HSF17 Collaboratively Regulate the Kernel Length in Maize

Plants (Basel). 2024 Jun 7;13(12):1592. doi: 10.3390/plants13121592.

Abstract

The kernel length is a crucial determinant of maize (Zea mays L.) yield; however, only a limited number of genes regulating kernel length have been validated, thus leaving our understanding of the mechanisms governing kernel length incomplete. We previously identified a maize kernel mutant, defective kernel219 (dek219), which encodes the DICER-LIKE1 protein that is essential for miRNA biogenesis. The present study revealed that dek219 consistently exhibits a stable phenotype characterized by a reduced kernel length. Further analysis indicated that dek219 may reduce the kernel length by inhibiting the expression of genes involved in regulating kernel length. By employing miRNA-target gene prediction, expression analysis, and correlation analysis, we successfully identified nine transcription factors that potentially participate in the regulation of kernel length under the control of DEK219. Among them, the upregulation fold change of HEAT SHOCK TRANSCRIPTION FACTOR17 (HSF17) expression was the highest, and the difference was most significant. The results of transient expression analysis and electrophoretic mobility shift assay (EMSA) indicated that HSF17 can inhibit the expression of DEFECTIVE ENDOSPERM18 (DE18), a gene involved in regulating kernel length. Furthermore, the hsf17 mutant exhibited a significant increase in kernel length, suggesting that HSF17 functions as a negative regulator of kernel length. The results of this study provide crucial evidence for further elucidating the molecular regulatory mechanism underlying maize kernel length and also offer valuable genetic resources for breeding high-yielding maize varieties.

Keywords: expressing regulation; kernel length; maize; miRNA; transcription factor.