Cd is highly mobile, non-essential trace element, that has become serious environmental issue due to its elevated concentration in soil. The present study was taken up to work out salutary effect of melatonin (Mlt) and PGPR ((Pseudomonas putida (Pp), Pseudomonas fluorescens (Pf) in 10 days old Cd stressed (0.3 mM) Brassica juncea L. seedlings. The present work investigated growth characteristics, photosynthetic pigments, secondary metabolites in melatonin-PGPR inoculated B. juncea seedlings. It was backed by molecular studies entailing RT-PCR and transcriptomic analyses. Our results revealed, substantial increase in photosynthetic pigments and secondary metabolites, after treatment with melatonin, P.putida, P. fluorescens in Cd stressed B. juncea seedlings, further validated with transcriptome analysis. Comparative transcriptome analyses identified 455, 5953, 3368, 2238 upregulated and 4921, 430, 137, 27 down regulated DEGs, Cn-vs-Cd, Cd-vs-Mlt, Cd-vs-Mlt-Pp-Pf, Cd-vs-Mlt-Pp-Pf-Cd comparative groups respectively. In depth exploration of genome analyses (Gene ontology, Kyoto encyclopaedia of genes), revealed that Cd modifies the expression patterns of most DEGs mainly associated to photosystem and chlorophyll synthesis. Also, gene expression studies for key photosynthetic genes (psb A, psb B, CHS, PAL, and PSY) suggested enhanced expression in melatonin-rhizobacteria treated Cd stressed B. juncea seedlings. Overall, results provide new insights into probable mechanism of Mlt-PGPR induced protection to photosynthesis in Cd stressed B. juncea plants.
Keywords: Cadmium; Gene expression; Melatonin; PGPR; Photosynthesis; Transcriptome.
Copyright © 2024 Elsevier B.V. All rights reserved.