Objective: To develop a whole-body low-dose CT (WBLDCT) deep learning model and determine its accuracy in predicting the presence of cytogenetic abnormalities in multiple myeloma (MM).
Materials and methods: WBLDCTs of MM patients performed within a year of diagnosis were included. Cytogenetic assessments of clonal plasma cells via fluorescent in situ hybridization (FISH) were used to risk-stratify patients as high-risk (HR) or standard-risk (SR). Presence of any of del(17p), t(14;16), t(4;14), and t(14;20) on FISH was defined as HR. The dataset was evenly divided into five groups (folds) at the individual patient level for model training. Mean and standard deviation (SD) of the area under the receiver operating curve (AUROC) across the folds were recorded.
Results: One hundred fifty-one patients with MM were included in the study. The model performed best for t(4;14), mean (SD) AUROC of 0.874 (0.073). The lowest AUROC was observed for trisomies: AUROC of 0.717 (0.058). Two- and 5-year survival rates for HR cytogenetics were 87% and 71%, respectively, compared to 91% and 79% for SR cytogenetics. Survival predictions by the WBLDCT deep learning model revealed 2- and 5-year survival rates for patients with HR cytogenetics as 87% and 71%, respectively, compared to 92% and 81% for SR cytogenetics.
Conclusion: A deep learning model trained on WBLDCT scans predicted the presence of cytogenetic abnormalities used for risk stratification in MM. Assessment of the model's performance revealed good to excellent classification of the various cytogenetic abnormalities.
Keywords: CT skeletal survey; Cytogenetic risk; Multiple myeloma.
© 2024. The Author(s), under exclusive licence to International Skeletal Society (ISS).