Semantic segmentation of microbial alterations based on SegFormer

Front Plant Sci. 2024 Jun 13:15:1352935. doi: 10.3389/fpls.2024.1352935. eCollection 2024.

Abstract

Introduction: Precise semantic segmentation of microbial alterations is paramount for their evaluation and treatment. This study focuses on harnessing the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, aiming to improve disease detection accuracy under natural acquisition conditions.

Methods: Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-B5 - were thoroughly analyzed to enhance disease detection, targeting diseases such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot, Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted of 2,450 raw images, expanded to 4,574 augmented images. The Segment Anything Model integrated into the Roboflow annotation tool facilitated efficient annotation and dataset preparation.

Results: The results reveal that MiT-B0 demonstrates balanced but slightly overfitting behavior, MiT-B3 adapts rapidly with consistent training and validation performance, and MiT-B5 offers efficient learning with occasional fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently outperformed MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general.

Discussion: The findings provide key insights for researchers to select the most suitable encoder for disease detection applications, propelling the field forward for further investigation. The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.

Keywords: computer vision; disease detection; food safety; mix transformer encoders; smart agriculture.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Russian Science Foundation (grant No. 21-16-00124, https://rscf.ru/en/project/21-16-00124/).