Oncoprotein LAMTOR5-mediated CHOP silence via DNA hypermethylation and miR-182/miR-769 in promotion of liver cancer growth

Acta Pharmacol Sin. 2024 Dec;45(12):2625-2645. doi: 10.1038/s41401-024-01310-y. Epub 2024 Jun 28.

Abstract

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

Keywords: CHOP; DNA methylation; LAMTOR5; lenvatinib; liver cancer; miR-182/miR-769.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Apoptosis
  • Cell Line, Tumor
  • Cell Proliferation*
  • DNA (Cytosine-5-)-Methyltransferase 1 / genetics
  • DNA (Cytosine-5-)-Methyltransferase 1 / metabolism
  • DNA Methylation*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / pathology
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Quinolines / pharmacology
  • Transcription Factor CHOP* / genetics
  • Transcription Factor CHOP* / metabolism

Substances

  • Transcription Factor CHOP
  • MicroRNAs
  • DDIT3 protein, human
  • Mirn182 microRNA, human
  • Adaptor Proteins, Signal Transducing
  • Quinolines
  • DNA (Cytosine-5-)-Methyltransferase 1