Lack of an atypical PDR transporter generates an immunogenic Cryptococcus neoformans strain that drives a dysregulated and lethal immune response in murine lungs

bioRxiv [Preprint]. 2024 Jun 17:2024.06.17.599354. doi: 10.1101/2024.06.17.599354.

Abstract

Cryptococcus neoformans is an opportunistic fungal pathogen responsible for >150,000 deaths every year with a mortality rate as high as 81%. This high medical burden is due, in part, to an incomplete understanding of its pathogenesis. In a previous study, we identified a cryptococcal atypical pleiotropic drug resistance (PDR) transporter, PDR6, that regulated antifungal resistance and host interactions. Here, we follow-up on the role of PDR6 in cryptococcal virulence. In vivo, mice infected with the pdr6Δ strain display altered symptomatology and disease progression. Specifically, we observed a significant increase in the innate immune cell populations in the pdr6Δ-infected mice when compared to their WT-infected littermates. Furthermore, quantification of pulmonary cytokines/chemokines revealed a robust increase of pro-inflammatory cytokines in mice infected with the pdr6Δ mutant strain. Whereas antifungal treatment of pdr6Δ-infected animals did not affect survival, treatment with a corticosteroid significantly extended survival, highlighting the importance of a balanced/controlled host immune response. We determined that the hyper-inflammatory immune response occurs, in part, because the loss of the Pdr6 transporter indirectly alters the cryptococcal cell wall architecture and results in the increased exposure of chitin, β-glucan, and other cryptococcal-specific pathogen associated molecular patterns. Taken together, this study provides clinical insights regarding cryptococcal pathogenesis while also providing additional functions of PDR-type ATP-binding cassette (ABC) transporters in pathogenic fungi.

Publication types

  • Preprint