Lung transplantation is hampered by the lack of suitable donors. Previously, donors that were thought to be marginal or inadequate were discarded. However, new and exciting technology, such as ex vivo lung perfusion (EVLP), offers lung transplant providers extended assessment for marginal donor allografts. This dynamic assessment platform has led to an increase in lung transplantation and has allowed providers to use donors that were previously discarded, thus expanding the donor pool. Current perfusion techniques use cellular or acellular perfusates, and both have distinct advantages and disadvantages. Perfusion composition is critical to maintaining a homeostatic environment, providing adequate metabolic support, decreasing inflammation and cellular death, and ultimately improving organ function. Perfusion solutions must contain sufficient protein concentration to maintain appropriate oncotic pressure. However, current perfusion solutions often lead to fluid extravasation through the pulmonary endothelium, resulting in inadvertent pulmonary edema and damage. Thus, it is necessary to develop novel perfusion solutions that prevent excessive damage while maintaining proper cellular homeostasis. Here, we describe the application of a polymerized human hemoglobin (PolyhHb)-based oxygen carrier as a perfusate and the protocol in which this perfusion solution can be tested in a model of rat EVLP. The goal of this study is to provide the lung transplant community with key information in designing and developing novel perfusion solutions, as well as the proper protocols to test them in clinically relevant translational transplant models.