Characterization of a commercial plastic scintillator for electron FLASH dosimetry

J Appl Clin Med Phys. 2024 Aug;25(8):e14451. doi: 10.1002/acm2.14451. Epub 2024 Jul 1.

Abstract

Purpose: This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems.

Methods and materials: We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film.

Results: We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of ∼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies.

Conclusions: This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.

Keywords: FLASH research extension (FLEX); dosimetry; electron ultra‐high dose rate (eFLASH); plastic scintillator.

MeSH terms

  • Electrons*
  • Humans
  • Particle Accelerators / instrumentation
  • Phantoms, Imaging
  • Plastics* / chemistry
  • Radiometry / instrumentation
  • Radiometry / methods
  • Radiotherapy Dosage
  • Scintillation Counting* / instrumentation
  • Scintillation Counting* / methods

Substances

  • Plastics