Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis

FASEB J. 2024 Jul 15;38(13):e23792. doi: 10.1096/fj.202400540RRR.

Abstract

Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.

Keywords: age‐related macular degeneration; choroidal neovascularization; hypoxia‐inducible factors; macular neovascularization; retinal pigment epithelium; subretinal fibrosis.

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / antagonists & inhibitors
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Epithelial-Mesenchymal Transition / drug effects
  • Fibrosis* / metabolism
  • Hypoxia-Inducible Factor 1, alpha Subunit / antagonists & inhibitors
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Macular Degeneration / drug therapy
  • Macular Degeneration / metabolism
  • Macular Degeneration / pathology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout*
  • Retina / metabolism
  • Retina / pathology
  • Retinal Pigment Epithelium* / metabolism
  • Retinal Pigment Epithelium* / pathology
  • Von Hippel-Lindau Tumor Suppressor Protein* / genetics
  • Von Hippel-Lindau Tumor Suppressor Protein* / metabolism

Substances

  • Von Hippel-Lindau Tumor Suppressor Protein
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Basic Helix-Loop-Helix Transcription Factors
  • Hif1a protein, mouse
  • VHL protein, mouse
  • endothelial PAS domain-containing protein 1