CTLA-4 silencing could promote anti-tumor effects in hepatocellular

Med Oncol. 2024 Jul 2;41(8):193. doi: 10.1007/s12032-024-02361-1.

Abstract

Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.

Keywords: CTLA-4; HePG2; Hepatocellular carcinoma; siRNA.

MeSH terms

  • Apoptosis*
  • CTLA-4 Antigen* / antagonists & inhibitors
  • CTLA-4 Antigen* / genetics
  • CTLA-4 Antigen* / metabolism
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / metabolism
  • Carcinoma, Hepatocellular* / pathology
  • Carcinoma, Hepatocellular* / therapy
  • Cell Movement* / genetics
  • Cell Proliferation*
  • Gene Silencing
  • Hep G2 Cells
  • Humans
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / pathology
  • Liver Neoplasms* / therapy
  • RNA, Small Interfering* / genetics

Substances

  • CTLA-4 Antigen
  • RNA, Small Interfering
  • CTLA4 protein, human