Introduction: Complexities of robotic distal gastrectomy (RDG) give reason to assess physician's surgical skill. Varying levels in surgical skill affect patient outcomes. We aim to investigate how a novel artificial intelligence (AI) model can be used to evaluate surgical skill in RDG by recognizing surgical instruments.
Methods: Fifty-five consecutive robotic surgical videos of RDG for gastric cancer were analyzed. We used Deeplab, a multi-stage temporal convolutional network, and it trained on 1234 manually annotated images. The model was then tested on 149 annotated images for accuracy. Deep learning metrics such as Intersection over Union (IoU) and accuracy were assessed, and the comparison between experienced and non-experienced surgeons based on usage of instruments during infrapyloric lymph node dissection was performed.
Results: We annotated 540 Cadiere forceps, 898 Fenestrated bipolars, 359 Suction tubes, 307 Maryland bipolars, 688 Harmonic scalpels, 400 Staplers, and 59 Large clips. The average IoU and accuracy were 0.82 ± 0.12 and 87.2 ± 11.9% respectively. Moreover, the percentage of each instrument's usage to overall infrapyloric lymphadenectomy duration predicted by AI were compared. The use of Stapler and Large clip were significantly shorter in the experienced group compared to the non-experienced group.
Conclusions: This study is the first to report that surgical skill can be successfully and accurately determined by an AI model for RDG. Our AI gives us a way to recognize and automatically generate instance segmentation of the surgical instruments present in this procedure. Use of this technology allows unbiased, more accessible RDG surgical skill.
Keywords: automated instrument recognition; gastric cancer; robotic distal gastrectomy; surgical skill.
© 2024 The Authors. Annals of Gastroenterological Surgery published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Gastroenterological Surgery.