Purpose: To investigate the potential of virtual contrast-enhanced magnetic resonance imaging (VCE-MRI) for gross-tumor-volume (GTV) delineation of nasopharyngeal carcinoma (NPC) using multi-institutional data.
Methods and materials: This study retrospectively retrieved T1-weighted (T1w), T2-weighted (T2w) MRI, gadolinium-based contrast-enhanced MRI (CE-MRI), and planning computed tomography (CT) of 348 biopsy-proven NPC patients from 3 oncology centers. A multimodality-guided synergistic neural network (MMgSN-Net) was trained using 288 patients to leverage complementary features in T1w and T2w MRI for VCE-MRI synthesis, which was independently evaluated using 60 patients. Three board-certified radiation oncologists and 2 medical physicists participated in clinical evaluations in 3 aspects: image quality assessment of the synthetic VCE-MRI, VCE-MRI in assisting target volume delineation, and effectiveness of VCE-MRI-based contours in treatment planning. The image quality assessment includes distinguishability between VCE-MRI and CE-MRI, clarity of tumor-to-normal tissue interface, and veracity of contrast enhancement in tumor invasion risk areas. Primary tumor delineation and treatment planning were manually performed by radiation oncologists and medical physicists, respectively.
Results: The mean accuracy to distinguish VCE-MRI from CE-MRI was 31.67%; no significant difference was observed in the clarity of tumor-to-normal tissue interface between VCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor invasion risk areas, an accuracy of 85.8% was obtained. The image quality assessment results suggest that the image quality of VCE-MRI is highly similar to real CE-MRI. The mean dosimetric difference of planning target volumes was less than 1 Gy.
Conclusions: The VCE-MRI is highly promising to replace the use of gadolinium-based CE-MRI in tumor delineation of NPC patients.
Copyright © 2024 Elsevier Inc. All rights reserved.