The purpose of this study was to evaluate the validity and reliability of the loadsol in measuring pedal reaction force (PRF) during stationary cycling as well as lower limb symmetry. Ten healthy participants performed bouts of cycling at 1kg, 2kg, and 3kg workloads (conditions) on a cycle ergometer. The ergometer was fitted with instrumented pedals and participants wore loadsol plantar pressure insoles. A 3 x 2 (Condition x Sensor Type) ANOVA was used to examine the differences in measured peak PRF, impulse, and symmetry indices. Root mean square error, intraclass correlation coefficients, and Passing-Bablok regressions were used to further assess reliability and validity. The loadsol demonstrated poor (< 0.5) to excellent (> 0.9) agreement as measured by intraclass correlation coefficients for impulse and peak PRF. Passing-Bablok regression revealed a systematic bias only when assessing all workloads together for impulse with no bias present when looking at individual workloads. The loadsol provides a consistent ability to measure PRF and symmetry when compared to a gold standard of instrumented pedals but exhibits an absolute underestimation of peak PRF. This study provides support that the loadsol can identify and track symmetry differences in stationary cycling which means there is possible usage for clinical scenarios and interventions in populations with bilateral asymmetries such as individuals with knee replacements, limb length discrepancies, diabetes, or neurological conditions. Further investigation of bias should be conducted in longer cycling sessions to ensure that the loadsol system is able to maintain accuracy during extended use.
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.