Colposcopy constitutes a pivotal step in the diagnosis and management of cervical intraepithelial neoplasia; nevertheless, the method has several inherent and external limitations. Electrical impedance spectroscopic (EIS) has been among the adjuncts that have been developed to increase the diagnostic accuracy of colposcopy. EIS is based on the principle that the trajectory of electrical current alters depending on the consistency of the tissues. In the present study, we investigate the diagnostic accuracy and clinical utility of EIS by means of searching the available evidence. Our search yielded 17 articles during the period 2005-2023. Subsequently, we focused on the performance metrics of the included studies. The general concept is that EIS, in combination with colposcopy, is a method with increased sensitivity and specificity in detecting high-grade cervical intraepithelial neoplasia as compared to colposcopy alone. However, we documented a heterogeneous distribution of these and other metrics, including the positive predictive value, the negative predictive value, and the area under the receiver operating characteristic curve (AUC). Additionally, we located potential confounders that might hamper the measurements of EIS and, as such, warrant further investigation in future research. We conclude that future studies should be directed towards randomized multicentric trials, whereas the advent of artificial intelligence might improve the diagnostic accuracy of the method by helping incorporate a large amount of data.
Keywords: cervical cancer diagnosis; cervical cancer prevention; cervical intraepithelial neoplasia; colposcopy; electrical impedance spectroscopy; zedscan.
Copyright © 2024, Panagakis et al.