Inhibition of Notch4 Using Novel Neutralizing Antibodies Reduces Tumor Growth in Murine Cancer Models by Targeting the Tumor Endothelium

Cancer Res Commun. 2024 Jul 1;4(7):1881-1893. doi: 10.1158/2767-9764.CRC-24-0081.

Abstract

Endothelial Notch signaling is critical for tumor angiogenesis. Notch1 blockade can interfere with tumor vessel function but causes tissue hypoxia and gastrointestinal toxicity. Notch4 is primarily expressed in endothelial cells, where it may promote angiogenesis; however, effective therapeutic targeting of Notch4 has not been successful. We developed highly specific Notch4-blocking antibodies, 6-3-A6 and humanized E7011, allowing therapeutic targeting of Notch4 to be assessed in tumor models. Notch4 was expressed in tumor endothelial cells in multiple cancer models, and endothelial expression was associated with response to E7011/6-3-A6. Anti-Notch4 treatment significantly delayed tumor growth in mouse models of breast, skin, and lung cancers. Enhanced tumor inhibition occurred when anti-Notch4 treatment was used in combination with chemotherapeutics. Endothelial transcriptomic analysis of murine breast tumors treated with 6-3-A6 identified significant changes in pathways of vascular function but caused only modest change in canonical Notch signaling. Analysis of early and late treatment timepoints revealed significant differences in vessel area and perfusion in response to anti-Notch4 treatment. We conclude that targeting Notch4 improves tumor growth control through endothelial intrinsic mechanisms.

Significance: A first-in-class anti-Notch4 agent, E7011, demonstrates strong antitumor effects in murine tumor models including breast carcinoma. Endothelial Notch4 blockade reduces perfusion and vessel area.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing* / pharmacology
  • Antibodies, Neutralizing* / therapeutic use
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Disease Models, Animal
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism
  • Female
  • Humans
  • Mice
  • Neovascularization, Pathologic* / drug therapy
  • Neovascularization, Pathologic* / metabolism
  • Neovascularization, Pathologic* / pathology
  • Receptor, Notch4* / metabolism
  • Signal Transduction / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • Receptor, Notch4
  • Antibodies, Neutralizing
  • NOTCH4 protein, human
  • Notch4 protein, mouse