Rectification, the preferential transport of a current in one direction through a system, has garnered significant attention in molecules because of its importance for controlling thermal and electronic currents at the nanoscale. Here, we report the presence of energy storage rectification effects in a molecular chain. This phenomenon is generated by subjecting a harmonic molecular chain to an oscillating temperature gradient and showing that the energy absorption rate of the system depends on the direction of the gradient. We examine how the energy storage rectification ratios in the chain are affected by the oscillating gradient, asymmetry in the chain, and the system parameters. We find that energy storage rectification can be observed in harmonic lattice structures with time-dependent temperatures and that, correspondingly, anharmonicity is not required to generate this rectification mechanism in such systems.
Keywords: energy transport; molecular rectification; thermal conductance; thermal rectification.
Creative Commons Attribution license.