BRCA1 foci test as a predictive biomarker of olaparib response in ovarian cancer patient-derived xenograft models

Front Pharmacol. 2024 Jun 25:15:1390116. doi: 10.3389/fphar.2024.1390116. eCollection 2024.

Abstract

Standard therapy for high-grade ovarian carcinoma includes surgery followed by platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors (PARPis). Deficiency in homologous recombination repair (HRD) characterizes almost half of high-grade ovarian carcinomas and is due to genetic and epigenetic alterations in genes involved in HR repair, mainly BRCA1/BRCA2, and predicts response to PARPi. The academic and commercial tests set up to define the HRD status of the tumor rely on DNA sequencing analysis, while functional tests such as the RAD51 foci assay are currently under study, but have not been validated yet and are available for patients. In a well-characterized ovarian carcinoma patient-derived xenograft platform whose response to cisplatin and olaparib, a PARPi, is known, we assessed the association between the BRCA1 foci score, determined in formalin-fixed paraffin-embedded tumor slices with an immunofluorescence technique, and other HRD biomarkers and explored the potential of the BRCA1 foci test to predict tumors' response to cisplatin and olaparib. The BRCA1 foci score was associated with both tumors' HRD status and RAD51 foci score. A low BRCA1 foci score predicted response to olaparib and cisplatin, while a high score was associated with resistance to therapy. As we recently published that a low RAD51 foci score predicted olaparib sensitivity in our xenobank, we combined the two scores and showed that the predictive value was better than with the single tests. This study reports for the first time the capacity of the BRCA1 foci test to identify HRD ovarian carcinomas and possibly predict response to olaparib.

Keywords: BRCA1 foci; biomarker; drug resistance; homologous recombination deficiency testing; ovarian cancer.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. The research leading to these results has received funding from the Ministry of University and Research-MUR under PNRR M4C2I1.3 Heal Italia project PE00000019 CUP B43D22000710006 of Istituto di Ricerche Farmacologiche Mario Negri IRCCS to Giovanna Damia. The authors also acknowledge the support by the Italian Association for Cancer Research (AIRC, IG19797 project, PI GD).