Introduction: Pulpal and periradicular diseases stem from immune reactions to microbiota, causing inflammation. Limited blood supply hampers dental pulp self-healing. Managing inflammation involves eliminating bacteria and reducing pro-inflammatory mediators especially MMP-9, which has a significant correlation with pulpitis. s. Flavonoids like Hesperidin, Baicalein, Epigallocatechin gallate, Genistein, Icariin, and Quercetin show potential for pulp capping.
Aim: This in-silico study compares various Flavonoids for their anti-inflammatory effects on MMP-9, with Chlorhexidine as a control, a known MMP-9 inhibitor.
Materials and methods: Protein and Ligand Preparation: The human MMP-9 catalytic domain (PDB ID: 4XCT) structure was retrieved, and necessary modifications were made. Flavonoids from PubChem database were prepared for docking using AutoDock Vina. A grid for docking was created, and molecular dynamics simulations were conducted using Gromacs-2019.4 with GROMOS96 force field. Trajectory analysis was performed, and MM-PBSA calculation determined binding free energies.
Results: Analysis of MMP-9 and ligand interactions revealed Hesperidin's high binding affinity, forming numerous hydrogen bonds with specific amino acids. Molecular dynamics simulations confirmed stability, with RMSD, RMSF, Rg, and SASA indicating consistent complex behaviour over 100 ns. MM-PBSA calculation affirmed favourable energy contributions in MMP-9-Hesperidin interactions.
Conclusion: MMP-9 plays a crucial role in prognosis of pulpitis. Incorporating MMP-9 inhibitors into pulp capping agents may enhance therapeutic efficacy. Hesperidin emerges as a potent MMP-9 inhibitor, warranting further in vivo validation against other agents.
Keywords: Flavonoids; hesperidin; in silico; matrix metalloproteinases-9; pulp capping; pulpitis.
Copyright: © 2024 Journal of Conservative Dentistry and Endodontics.