Background: Epilepsy is a paroxysmal abnormal hypersynchronous electrical discharge characterized by recurrent seizures. It affects more than 50 million people worldwide. Stress is the leading cause of neurodegeneration and can produce seizures that may lead to or aggravate epilepsy. Inflammation plays a vital role in epilepsy by modulating oxidative stress, and levels of neuroinflammatory cytokines including NF-κB, TNF-α, and IL-1β.
Methods: Stress-induced changes in behavior were evaluated in mice by employing behavioral assessment tests such as an elevated plus maze, light-dark box, open field test, tail suspension test, Y-maze, novel object recognition test, and Morris water maze in pentylenetetrazole (PTZ) kindled mice. Behavioral changes in all these paradigms including seizure score, latency, and frequency showed an increase in symptoms in PTZ (35 mg/kg) induced seizures in stressed mice (RS-PTZ) as compared to PTZ, Stress, and normal animals.
Results: The Enzyme-linked immunosorbent assay (ELISA) results confirmed increased in serum cortisol levels. Histological examinations showed neurodegenerative changes in the hippocampus and cortex regions. The spectrophotometric evaluation showed an increase in oxidative stress by decreasing antioxidant production i.e. reduced glutathione, glutathione -s- transferase, and catalase (CAT), and increasing oxidant levels such as maloaldehyde and nitric oxide. Immunohistochemistry results showed increased expression of NF-κB, TNF-α, and IL-1β in the cortex and hippocampus of mice brains.
Conclusions: Results from the study conclude that stress increases the likelihood of eliciting an epileptic attack by increasing the level of reactive oxygen species and neuroinflammation.
Keywords: Cytokines; Neuroinflammation; Oxidative stress; PTZ-Induced seizures; Restrained stress.
Copyright © 2024 Elsevier Inc. All rights reserved.