Introduction: Surgical procedures in contemporary practice frequently employ energy-based devices, yet comprehensive education surrounding their safety and effectiveness remains deficient. We propose an innovative course for residents that aims to provide basic electrosurgery knowledge and promote the safe use of these devices.
Methods: We developed a simulated training course for first-year general surgery and orthopedic residents. First, a survey was conducted regarding their knowledge perception about energy devices. The course consisted of two online theoretical sessions, followed by three in-person practical sessions. First-year residents performed three video-recorded attempts using a cadaveric model and were assessed through a digital platform using the Objective Structured Assessment of Technical Skill (OSATS), a Specific Rating Scale (SRS), and a surgical energy-based devices scale (SEBS). Third-year residents were recruited as a control group.
Results: The study included 20 first-year residents and 5 third-year residents. First-year residents perceived a knowledge gap regarding energy devices. Regarding practical performance, both OSATS and checklist scores were statistically different between novices at their first attempt and the control group. When we analyzed the novice's performance, we found a significant increase in OSATS (13 vs 21), SRS (13 vs 17.5), and SEBS (5 vs 7) pre- and post-training scores. The amount of feedback referred to skin burns with the electro-scalpel reduced from 18 feedbacks in the first attempt to 2 in the third attempt (p-value = 0.0002). When comparing the final session of novices with the control group, no differences were found in the SRS (p = 0.22) or SEBS (p = 0.97), but differences remained in OSATS (p = 0.017).
Conclusion: This study supports the implementation of structured education in electrosurgery among surgical trainees. By teaching first-year residents about electrosurgery, they can acquire a skill set equivalent to that of third-year residents. The integration of such courses can mitigate complications associated with energy device misuse, ultimately enhancing patient safety.
Keywords: Curriculum; Electrosurgery; Energy device; FUSE; Patient safety; Surgical education.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.