Despite constant achievements in treatment, acute kidney injury (AKI) remains a significant public health problem and a cause of mortality in the human population. In developed countries, AKI is a significant and frequent hospital complication, especially among patients admitted to intensive care units, where mortality rates can reach up to 50%. In addition, AKI has been implicated as an independent risk factor for the development of chronic kidney disease. Hyperbaric oxygenation (HBO) has been used as a primary or adjunctive therapy for the past 50 years, both in experimental and clinical studies. HBO is a treatment in which the patient is occasionally exposed to 100% oxygen at a pressure greater than atmospheric pressure at sea level. However, despite decades of extensive research, the potentially beneficial effects of this therapeutic approach are still not fully understood, although many potential mechanisms have been proposed, such as antioxidative, anti-inflammatory, anti-apoptotic, etc. Furthermore, the low cost and insignificant adverse events make HBO a potentially important strategy in the prevention and treatment of different diseases. Considering all of this, this review highlights the potential role of HBO in maintaining cellular homeostasis disrupted due to AKI, caused in different experimental models.
Keywords: acute kidney injury; cellular physiology; hyperbaric oxygen.