Development of advanced materials is often time consuming and expensive because of the large number of variables involved and experiments needed. An effective experimentation strategy would accelerate development by reducing the required amount of experiments without sacrificing the obtainable information. In this paper, the development of auxetic polyurethane (PU) foams was discussed as a case study. Auxetic materials are materials with a negative Poisson's ratio and have potential in many structural and functional applications. Auxetic PU foams are the most studied auxetic materials, and their manufacturing and properties are affected by many processing and environmental factors. This paper introduces a sophisticated design of experimental methodology to help reduce the experimental effort while effectively screening these factors. This methodology is then applied in an experiment to illustrate its utility and distinct advantages that greatly facilitate material development.
Keywords: advanced materials; auxetic foam; design of experiments; split-plot design.