Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia

Sensors (Basel). 2024 Jun 21;24(13):4052. doi: 10.3390/s24134052.

Abstract

Conventional air quality monitoring networks typically tend to be sparse over areas of interest. Because of the high cost of establishing such monitoring systems, some areas are often completely left out of regulatory monitoring networks. Recently, a new paradigm in monitoring has emerged that utilizes low-cost air pollution sensors, thus making it possible to reduce the knowledge gap in air pollution levels for areas not covered by regulatory monitoring networks and increase the spatial resolution of monitoring in others. The benefits of such networks for the community are almost self-evident since information about the level of air pollution can be transmitted in real time and the data can be analysed immediately over the wider area. However, the accuracy and reliability of newly produced data must also be taken into account in order to be able to correctly interpret the results. In this study, we analyse particulate matter pollution data from a large network of low-cost particulate matter monitors that was deployed and placed in outdoor spaces in schools in central and western Serbia under the Schools for Better Air Quality UNICEF pilot initiative in the period from April 2022 to June 2023. The network consisted of 129 devices in 15 municipalities, with 11 of the municipalities having such extensive real-time measurements of particulate matter concentration for the first time. The analysis showed that the maximum concentrations of PM2.5 and PM10 were in the winter months (heating season), while during the summer months (non-heating season), the concentrations were several times lower. Also, in some municipalities, the maximum values and number of daily exceedances of PM10 (50 μg/m3) were much higher than in the others because of diversity and differences in the low-cost sensor sampling sites. The particulate matter mass daily concentrations obtained by low-cost sensors were analysed and also classified according to the European AQI (air quality index) applied to low-cost sensor data. This study confirmed that the large network of low-cost air pollution sensors can be useful in providing real-time information and warnings about higher pollution days and episodes, particularly in situations where there is a lack of local or national regulatory monitoring stations in the area.

Keywords: air pollution; low-cost sensors; particulate matter; sensor network; sensor network metrology.