Genomic Deletion of PFKFB3 Decreases In Vivo Tumorigenesis

Cancers (Basel). 2024 Jun 26;16(13):2330. doi: 10.3390/cancers16132330.

Abstract

Rapidly proliferative processes in mammalian tissues including tumorigenesis and embryogenesis rely on the glycolytic pathway for energy and biosynthetic precursors. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) plays an important regulatory role in glycolysis by activating the key rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase (PFK-1). We have previously determined that decreased PFKFB3 expression reduced glycolysis and growth in transformed cells in vitro and suppressed xenograft growth in vivo. In earlier studies, we created a constitutive knockout mouse to interrogate the function of PFKFB3 in vivo but failed to generate homozygous offspring due to the requirement for PFKFB3 for embryogenesis. We have now developed a novel transgenic mouse model that exhibits inducible homozygous pan-tissue Pfkfb3 gene deletion (Pfkfb3fl/fl). We have induced Pfkfb3 genomic deletion in these mice and found that it effectively decreased PFKFB3 expression and activity. To evaluate the functional consequences of Pfkfb3 deletion in vivo, we crossed Cre-bearing Pfkfb3fl/fl mice with oncogene-driven tumor models and found that Pfkfb3 deletion markedly decreased their glucose uptake and growth. In summary, our studies reveal a critical regulatory function for PFKFB3 in glycolysis and tumorigenesis in vivo and characterize an effective and powerful model for further investigation of its role in multiple biological processes.

Keywords: Erbb2; Ras; breast cancer; glucose metabolism; glycolysis; lung cancer; metabolism; phosphofructokinase.

Grants and funding

This research received no external funding.