3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces. Scaffolds included polycaprolactone (PCL) as the primary polymer, β-tricalcium phosphate (β-TCP) as the ceramic filler, and poly(ethylene glycol) (PEG) as a porogen. The pressurized filament extrusion gave flexible filaments composed of PCL, β-TCP, and PEG, which are ready to use in fused filament fabrication (FFF) 3D printers. Washing of 3D-printed scaffolds in ethanol solution removed PEG and revealed a microporous structure and ceramic particles on the scaffold's surfaces. Furthermore, 3D-printed materials exhibit good printing precision, no cytotoxic properties, and highly impact MG63 cell alignment. Although combining PCL, PEG, and β-TCP is quite popular, the presented method allows the production of porous scaffolds with a well-organized structure without advanced equipment, and the produced filaments can be used to 3D print scaffolds on a simple commercially available 3D printer.
© 2024 The Authors. Published by American Chemical Society.