In this work, we propose a highly reflective Ni/Pt/Al p-electrode for AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with a wavelength of 276 nm. AlGaN-based DUV LEDs with traditional Al-based reflectivity electrodes suffer from device degradation and wall-plug efficiency (WPE) droop due to the Al diffusion during electrode annealing. By inserting a Pt layer between the Ni contact layer and the Al reflective layer, the contact characteristics of the p-electrode can be optimized by blocking the diffusion of the O and Al atoms, maintaining a high reflectivity of over 80% near 280 nm. Compared to the AlGaN-based DUV LEDs with Ni/Au traditional p-electrodes and Ni/Al traditional reflective p-electrodes, the WPE of the LED with a highly reflective Ni/Pt/Al p-electrode is improved by 10.3% and 30.5%, respectively. Besides, compared to the other novel reflective p-electrodes using multiple annealing or evaporation processes reported for the AlGaN-based DUV LEDs, we provide a new, to the best of our knowledge, optimization method for single evaporation and annealing p-type reflective electrodes, featured with a simpler and more convenient process flow.