Purpose: The past two decades have witnessed the rise of keyhole microscopic minimally invasive surgeries, including the transciliary supraorbital approach (TCA) and transpalpebral approach (TPA), commonly known as the transorbital approach. This study aims to elucidate the nuances, specific indications, and advantages of each approach.
Methods: A series of dissections were conducted on five formalin-fixed, alcohol-preserved cadaver heads. The TCA was performed on one side, and the TPA on the other. Virtual measurements of working angles for both approaches were recorded. Additionally, three clinical cases were presented to illustrate the practical application of the techniques.
Results: For TCA, the craniotomy dimensions were 1.7 cm x 2.5 cm (Cranial-Caudal (CC) x Lateral-Lateral (LL)), while for TPA, they measured 2.1 cm x 2.9 cm (CC x LL). The measurements of anterior clinoid processes (ACP) were obtained and compared between approaches. In the TCA, the mean ipsilateral ACP measurement was 62 mm (Range: 61 -63 mm), and the mean contralateral ACP measurement was 71.2 mm (Range: 70 -72 mm). In TPA, these measurements were 47.8 mm (Range: 47 -49 mm) and 62.8 mm (Range: 62 -64 mm), respectively. TCA exhibited an average cranial-caudal angle of 14.9°, while TPA demonstrated an average of 8.3°.
Conclusion: The anterior cranial fossa was better exposed by a TCA, which also featured shorter operative times, enhanced midline visualization, and a quicker learning curve. Conversely, the middle fossa was better exposed by a TPA, making it an excellent option for middle fossa pathologies, including those in the anterior temporal lobe. After sphenoid bone wing drilling, the TPA offers superior visualization from the lateral to the medial aspect and enhances the CC angle. Additionally, the TPA reduces the risk of postoperative frontalis palsy based on anatomic landmarks. However, the TPA requires a greater cranial osteotomy, and due to unfamiliarity with eyelid anatomy, the learning curve for most neurosurgeons is lengthier for this procedure.
Keywords: Keyhole; Skull base; Transciliary; Transpalpebral.
© 2024. The Author(s).