Background: Early preterm birth (ePTB) - born before 34 weeks of gestation - poses a significant public health challenge. Two randomized trials indicated an ePTB reduction among pregnant women receiving high-dose docosahexaenoic acid (DHA) supplementation. One of them is Assessment of DHA on Reducing Early Preterm Birth (ADORE). A survey employed in its secondary analysis identified women with low DHA levels, revealing that they derived greater benefits from high-dose DHA supplementation. This survey's inclusion in future trials can provide critical insights for informing clinical practices.
Objective: To optimize a Phase III trial design, ADORE Precision, aiming at assessing DHA supplement (200 vs. 1000 mg/day) on reducing ePTB among pregnant women with a low baseline DHA.
Methods: We propose a Bayesian Hybrid Response Adaptive Randomization (RAR) Design utilizing a finite mixture model to characterize gestational age at birth. Subsequently, a dichotomized ePTB outcome is used to inform trial design using RAR. Simulation studies were conducted to compare a Fixed Design, an Adaptive Design with early stopping, an ADORE-like Adaptive RAR Design, and two new Hybrid Designs with different hyperpriors.
Discussion: Simulation reveals several advantages of the RAR designs, such as higher allocation to the more promising dose and a trial duration reduction. The proposed Hybrid RAR Designs addresses the statistical power drop observed in Adaptive RAR. The new design model shows robustness to hyperprior choices. We recommend Hybrid RAR Design 1 for ADORE Precision, anticipating that it will yield precise determinations, which is crucial for advancing our understanding in this field.
Keywords: Adaptive trial design; Docosahexaenoic acid; Pregnancy.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.