Background & aims: It has been postulated that carriers of PNPLA3 I148M (CG [Ile/Met] or GG [Met/Met]) develop metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance or metabolic syndrome. However, the relationship between insulin resistance and MASLD according to the PNPLA3 allele has not been carefully assessed.
Methods: A total of 204 participants were recruited and underwent PNPLA3 genotyping, an oral glucose tolerance test, liver proton magnetic resonance spectroscopy and percutaneous liver biopsy if diagnosed with MASLD. A subgroup of patients (n = 55) had an euglycemic hyperinsulinemic clamp with glucose tracer infusion.
Results: As expected, patients with the CG/GG genotype had worse intrahepatic triglyceride content and worse liver histology. However, regardless of PNPLA3 genotype, patients with a diagnosis of MASLD had severe whole-body insulin resistance (Matsuda index, an estimation of insulin resistance in glucose metabolic pathways) and fasting and postprandial adipose tissue insulin resistance (Adipo-IR index and free fatty acid suppression during the oral glucose tolerance test, respectively, as measures of insulin resistance in lipolytic metabolic pathways) compared to patients without MASLD. Moreover, for the same amount of liver fat accumulation, insulin resistance was similar in patients with genotypes CC vs. CG/GG. In multiple regression analyses, A1c and Adipo-IR were associated with the presence of MASLD and advanced liver fibrosis, independently of PNPLA3 genotype.
Conclusions: PNPLA3 variant carriers with MASLD are equally insulin resistant as non-carriers with MASLD at the level of the liver, muscle, and adipose tissue. This calls for reframing "PNPLA3 MASLD" as an insulin-resistant condition associated with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes, wherein early identification and aggressive intervention are warranted to reverse metabolic dysfunction and prevent disease progression.
Impact and implications: It has been proposed that the PNPLA3 G allele is associated with the presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance. However, our results suggest that regardless of PNPLA3 alleles, the presence of insulin resistance is necessary for the development of MASLD. This calls for reframing patients with "PNPLA3 MASLD" not as insulin sensitive, but on the contrary, as an insulin-resistant population with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes.
Keywords: MASH; NAFLD; NASH; diabetes; steatosis.
© 2024 The Authors.