Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.
Keywords: Yarrowia; LC–MS analysis; dynamics; lipid bodies; lipidome; temperature.
© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.